Turbulence in a microscale planar confined impinging-jets reactor.

نویسندگان

  • Ying Liu
  • Michael G Olsen
  • Rodney O Fox
چکیده

Confined impinging-jets reactors (CIJR) offer many advantages for rapid chemical processing at the microscale in applications such as precipitation and the production of organic nanoparticles. It has been demonstrated that computational fluid dynamics (CFD) is a promising tool for "experiment-free" design and scale-up of such reactors. However, validation of the CFD model used for the microscale turbulence applications requires detailed experimental data on the unsteady flow, the availability of which has until now been very limited. In this work, microscopic particle-image velocimetry (microPIV) techniques were employed to measure the instantaneous velocity field for various Reynolds numbers in a planar CIJR. In order to illustrate the validation procedure, the performance of a particular CFD model, the two-layer k-epsilon model, was evaluated by comparing the predicted flow field with the experimental data. To our knowledge, this study represents the first attempt to directly measure and quantify velocity and turbulence in a microreactor and to use the results to validate a CFD model for microscale turbulent flows.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Validation of Les Predictions for Turbulent Flow in a Confined Impinging Jet Reactor

This work focuses on the prediction of turbulent flow in a Confined Impinging Jet Reactor using Large Eddy Simulation (LES). Three dimensional transient simulations were performed for various flow rates, ranging from quasi-steady laminar flow to unsteady turbulent flow. Predictions of the mean and fluctuating velocities were compared with micro Particle Image Velocimetry (mPIV) data. Good agree...

متن کامل

A Dimensionless Parameter Approach based on Singular Value Decomposition and Evolutionary Algorithm for Prediction of Carbamazepine Particles Size

The particle size control of drug is one of the most important factors affecting the efficiency of the nano-drug production in confined liquid impinging jets. In the present research, for this investigation the confined liquid impinging jet was used to produce nanoparticles of Carbamazepine. The effects of several parameters such as concentration, solution and anti-solvent flow rate and solvent...

متن کامل

Experimental study and numerical simulation of three dimensional two phase impinging jet flow using anisotropic turbulence model

Hydrodynamic of a turbulent impinging jet on a flat plate has been studied experimentally and numerically. Experiments were conducted for the Reynolds number range of 72000 to 102000 and a fixed jet-to-plate dimensionless distance of H/d=3.5. Based on the experimental setup, a multi-phase numerical model was simulated to predict flow properties of impinging jets using two turbulent models. Mesh...

متن کامل

Experimental Study of Effective Parameters in Production of Carbamazepine Nanoparticles

In this study, confined impinging liquid jets are used to produce nanoparticles of carbamazepine (CBZ). The effect of operating parameters, such as the kind of solvent,CBZ concentration, flow rate of solution and antisolvent on particle size, are experimentally investigated. The Scanning Electron Micrograph (SEM) photomicrographs show that nanodrug with smaller particle is achievable by usi...

متن کامل

Heat Transfer under Double Turbulent Pulsating Jets Impinging on a Flat Surface

In this study, the numerical analysis of turbulent flow and heat transfer of double pulsating impinging jets on a flat surface has been investigated. The unsteady two-dimensional numerical solution for two similar and dissimilar jets was performed using the RNG k-ε model. The results showed that the RNG k-ε model has more satisfactory predictions of the Nusselt number distribution. Comparisons ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Lab on a chip

دوره 9 8  شماره 

صفحات  -

تاریخ انتشار 2009